
Horcrux:
Automatic JavaScript Parallelism for

Resource-Efficient Web Computations

Shaghayegh Mardani1, Ayush Goel2, Ronny Ko3, Harsha Madhyastha2, Ravi Netravali4
1UCLA, 2University of Michigan, 3Harvard University, 4Princeton University

1

Modern Web Browsing

2

Performance MattersWeb Traffic is Dominated by Mobile

Users

53% of visits are
abandoned if a

mobile site takes
longer than 3

seconds to load.
Source: thinkwithgoogle.com

Content Providers

Source: bluecorona.com

If your site makes
$100,000/day, 1 sec

improvement in page
load increases revenue

by $7,000 daily.

The Problem: Computation Delays

• Evaluation setup

• With NO network delays:

3

Developed Region Emerging Region

• 582 pages in US
• Google Pixel 3

• 2.0 GHz octa-core

• 91 pages in Pakistan
• Redmi 6A

• 2.0 GHz quad-core

Performance metrics:
• Page Load Time (PLT)
• Speed Index (SI)

% of pages with load times > 3

Why Are Computation Delays Significant?

4

• 80% more JavaScript over the last 5
years

Mobile DevicesJavaScript

primary compute
improvements

=
more cores

52%

More cores != Better performance

5

Reason: Single-thread execution Solution: Parallelizing JavaScript

Parallelization Opportunities

• Web workers are widely supported
by browsers
• Constrained APIs:
• No access to DOM APIs
• No access to the main global state

• Legacy pages are highly amenable
to safe parallelization

6

Pass-by-value

DOM APIs

Main Thread

JS Heap

JavaScript Engine

of cores Speedup in JS Runtimes

2 cores 49%

4 cores 75%

8 cores 87%

Web
Worker

Challenges

7

Conservative
Signatures

C1: Ensuring Correctness
The exact state accessed by parallelized JavaScript
- Despite non-determinism and across all possible control paths

Signature Generation

8

Dynamic
Instrumentation

Instrumented

f(x)

Conservative Signatures

Original Page

Headless
Browser

Concolic
Engine

concrete
input

JS code
to execute

f(x)

g(x)

h(x)

f´(x)

g´(x)

h´(x)

g(x) h(x)

if (x == 5) {
y = x + 5;

} else {
z = 9;

}

{
"reads":[x],
"writes":[y, z]

}Server-side and Offline

Conservative signatures
Dynamic analysis: track read/writes to page state

Concolic execution: explore all possible control paths

Challenges

9

Client-side
Parallelization

Scheduler

Conservative
Signatures

C1: Ensuring Correctness
The exact state accessed by parallelized JavaScript
- Despite non-determinism and across all possible control paths

C2: Web Workers Constrained APIs
- How to parallelize execution with constrained APIs?

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

10Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

f(x) +

g(x) +

h(x) +

Web Worker

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

11Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

g(x) +

h(x) +

Web Worker

no state dependencies
x = "foo"

y = 5

f(x) reads & writes to x, yf(x) +

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

12Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

g(x) +

h(x) +

Web Worker

f(x) +

x = "foo"
y = 5

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

13Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

g(x) +

h(x) +

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

14Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

h(x) +

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

g(x) reads y

f(x) reads & writes to x, y

state
dependency

g(x) +

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

15Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

h(x) +

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

g(x)+

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

16Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

h(x) +

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

h(x) reads z

g(x)+

no state dependenciesz = "bar"

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

17Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

g(x)+

h(x) +

z = "bar"

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

18Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

g(x)+

Initialize
state

Execute
h(x)

z = "bar"

Horcrux Dynamic Scheduler

• Runs in the main browser thread
• Only task: manage offloads in event-driven mode

19Main Thread

Scheduler

Page State

JS Heap

DOM
Queue

Web Worker

Initialize
state

x = "foo"
y = 5

Execute
f(x)

g(x)+

Initialize
state

Execute
h(x)

z = "bar"

Pauses the execution

get
Ele

men
tBy

Id(
)

Challenges

20

Client-side
Parallelization

Scheduler

Conservative
Signatures

C1: Ensuring Correctness
The exact state accessed by parallelized JavaScript
- Despite non-determinism and across all possible control paths

C2: Web Workers Constrained APIs
- How to parallelize execution with constrained APIs?

Root-function
Granularity

C3: Offloading overheads
- Pass-by-value I/O can take ~0-10 ms

Offloading Granularity

• Trade-off: parallelization benefits vs. offloading overheads
• Solution: offloading root-function invocations

21

A()

B()

C()

D()

<script>
function A() {

…
B(); // invokes C()
D();
…

}
A();

</script>

Original Page Root-function

4x fewer offloads and
73% of parallelization

benefits

Evaluation Questions

• Impact on browser computation delays?
• Impact on end-to-end performance?
• Horcrux comparison to prior compute optimizations?
• What do conservative signatures forgo?
• How much are the server-side overheads?

22

Computation Delay Reductions

• Total Computation Time (TCT)

23

0

20

40

60

80

Developed Emerging

%
 Im

pr
ov

em
en

t
in

 T
C

T

Network: WiFi LTE
Median Improvements:

Developed: WiFi (41%), LTE (34%)

Emerging: WiFi (44%), LTE (31%)

End-to-end Performance Improvements

• Page Load Time (PLT) and Speed Index (SI)

24

0.00

0.25

0.50

0.75

1.00

0 25 50 75
% Improvement

C
D

F

LTE, PLT
LTE, SI
WiFi, PLT
WiFi, SI

100

27%

Developed Region

0.00

0.25

0.50

0.75

1.00

0 25 50 75
% Improvement

C
D

F

LTE, PLT
LTE, SI
WiFi, PLT
WiFi, SI

100

29%

Emerging Region

Conclusion

• More cores != Better performance
• Horcrux automatically parallelizes JavaScript execution using concolic

execution to take advantage of phones multi-core CPUs

25

shaghayegh@cs.ucla.edu

github.com/ShaghayeghMrdn/horcrux-osdi21

https://github.com/ShaghayeghMrdn/horcrux-osdi21

